
Demystifying v8 and
JavaScript Performance

twitter @thlorenz | github @thlorenz | irc thlorenz

https://twitter.com/thlorenz
https://github.com/thlorenz

Data Types

ECMA defines data types

v8 maps them to optimized data types

Primitive Types

Boolean

Number

String

Null

Undefined

!
•

Reference Types

Object

Array

Typed Array

Number

ECMA double-precision 64-bit binary format IEEE 754 value

v8 32-bit numbers to represent all values

• ECMAScript standard:
• number between -(2^53 -1) and 2^53 -1
• no specific type for integers
• can represent floating-point numbers
• three symbolic values: +Infinity, -Infinity, and NaN

Tagging

32 bit signed integer (SMI)

object pointer

Tagging

31 bit signed integer (SMI)

object pointer

0

1

• numbers bigger than 31 bits are boxed
• stored inside an object referenced via a pointer
• adds extra overhead (at a minimum an extra lookup)
• prefer SMIs for numeric values whenever possible
•

Objects

Object
Map

Property “bar”

Property “foo”

Extra Properties

Elements

Fixed Array
Map

Property “baz”

Property “poo”

Length

Fixed Array
Map

Property “1”

Property “0”

Length

• above shows most common optimized representation
• all blocks have a Map property describing their structure
• most objects contain all their properties in single block of memory "foo", “bar"
• object is a collection of properties aka key-value pairs
• named properties that don't fit are stored in overflow array "poo", "baz"
• numbered properties are stored in a separate contiguous array "1", “2"

Objects

Object
Map

Property “bar”

Property “foo”

Extra Properties

Elements

• property names are always strings
• any name used as property name that is not a string is stringified via .toString(), even numbers, so 1 becomes "1"
• Arrays in JavaScript are just objects with magic length property

Objects

Object
Map

Property “bar”

Property “foo”

Extra Properties

Elements

• v8 describes the structure of objects using maps that are used to create hidden classes and match data types
• resembles a table of descriptors with one entry for each property
• map contains info about size of the object
• map contains info about pointers to constructors and prototypes
• objects with same structure share same map

• objects created by the same constructor and have the same set of properties assigned in the same order
• have regular logical structure and therefore regular structure in memory
• share same map

• adding new property is handled via transition descriptor
• use existing map
• transition descriptor points at other map

Objects

function Point (x, y) {
Map M0

this.x = x;
Map M1

x → M1:12

this.y = y;

Map M2

y → M2:16
x : 12

x : 12 y : 16

}

Hidden Class
H2

• Point starts out without any fields with M0
• this.x =x -> map pointer set to M1 and value x is stored at offset 12 and "x" Transition descriptor added to M0
• this.y =y -> map pointer set to M2 and value y is stored at offset 16 and "y" Transition descriptor added to M1

Object
Map

Property “bar”

Property “foo”

Extra Properties

Elements

Fixed Array
Map

Property “baz”

Property “poo”

Length

Objects

In-object Slack Tracking
• objects allocated by a constructor are given enough memory for 32 fast properties to be stored (foo, bar)
• after certain number of objects (8) were allocated from same constructor

• v8 traverses transition tree from initial map to determine size of largest of these initial objects
• new objects of same type are allocated with exact amount of memory to store max number of properties
• initial objects are resized (down)

• if more properties are added to object afterwards they are strored in extra properties

Objects

Object
Map

Property “bar”

Property “foo”

Extra Properties

Elements

Fixed Array
Map

Property “1”

Property “0”

Length

• numbered properties are treated and ordered differently than others since any object can behave like an array
• v8 stores elements separate from named properties in an elements kind field
• most elements are fast elements which are stored in a contiguous array
• maps don't need transitions to maps that are identical except for element kinds

Hash Tables

• v8 tries to create object maps for whatever you are doing, but if amount of maps would get ridiculous it just gives up and drops object into dictionary
mode

• hash table used for difficult objects
• aka objects in dictionary mode
• accessing hash table property is much slower than accessing a field at a known offset
• if non-symbol string is used to access a property it is uniquified first
• v8 hash tables are large arrays containing keys and values

Typed Arrays

v8 uses unboxed backing stores

Float64 gets 64-bit allocated for each element

Double Array Unboxing
• Array's hidden class tracks element types
• if all doubles, array is unboxed aka upgraded to fast doubles

• wrapped objects layed out in linear buffer of doubles
• each element slot is 64-bit to hold a double
• SMIs that are currently in Array are converted to doubles
• very efficient access
• storing requires no allocation as is the case for boxed doubles
• causes hidden class change
• requires expensive copy-and-convert operation

• careless array manipulation may cause overhead due to boxing/unboxing

https://github.com/thlorenz/v8-perf/blob/master/data-types.md#double-array-unboxing

Arrays

fast elements

dictionary elements

Fast Elements

compact keysets

linear storage buffer

!
• fast elements kinds in order of increasing generality:

• fast SMIs (small integers)
• fast doubles (Doubles stored in unboxed representation)
• fast values (strings or other objects)

• allows access elements via offset

Fast Elements
Requirements

contiguous (non-sparse)

0 based

allocated with <100K elements

new Array(1E7)

for(int i=0; i<1E2; i++) {
 a[i] = i;
}

delete obj.foo

var a = [];
a[0] = 1;
a[1] = 'hello';
a[2] = 2.0;

var a = [1, 'hello', 2.0]

var a = new Array(2);var a = [];

• don't pre-allocate large arrays (>=100K elements), instead grow as needed, to avoid them being considered sparse
• do pre-allocate small arrays to correct size to avoid allocations due to resizing
• don't delete elements
• use literal initializer for Arrays with mixed values
• use typed arrays whenever possible
• copying an array, you should avoid copying from the back (higher indices to lower indices) because this will almost certainly trigger dictionary mode

Compilers

full compiler

• generates code for any JavaScript
• all code starts unoptimized
• initial (quick) JIT
• is not great and knows (almost) nothing about types
• needed to start executing code ASAP
• uses Inline Caches (ICs) to refine knowledge about types at runtime

Compilers

full compiler

optimizing compiler

• recompiles and optimizes hot code identified by the runtime profiler
• optimization decisions are based on type information collected while running the code produced by the full compiler

Optimization

if function executes a lot it becomes hot

hot function is re-compiled with optimizing
compiler

• optimistically
• lots of assumptions made from the calls made to that function so far
!
• type information takend from ICs
!
• operations get inlined speculatively using historic information
• monomorphic functions/constructors can be inlined entirely
• inlining allows even further optimizations
!

Inline Caches

gather knowledge about types while program
runs

type dependent code for operations is given
specific hidden classes as inputs

• 1. validate type assumptions (are hidden classes as expected)
• 2. do work
• Inline Caches alone without optimizing compiler step make huge performance difference (20x speedup)
!

• change at runtime via backpatching as more types are discovered to generate new ICs watch

Deoptimization

optimizations are speculative

assumptions are made and maybe violated

• if assumption is violated
• function deoptimized
• execution resumes in full compiler code
• in short term execution slows down
• normal to occur
• more info about about function collected
• better optimization attempted
• if assumptions are violated again, deoptimized again and start over

Deoptimization

• too many deoptimizations cause function to be sent to deoptimization hell
• considered not optimizable and no optimization is ever attempted again (especially bad on server)

• certain constructs like try/catch (not on FireFox) are considered not optimizable and functions containing it go straight to deoptimization hell due to
bailout watch

Deoptimization

function Point(x, y) {
 this.x = x;
 this.y = y;
}
!
var p = new Point(1, 2);
// => hidden Point class created
!
// ...
!
p.z = 3;
// => another hidden class (Point') created

• Point class created, code still deoptimized
• functions that have Point argument are optimized
• z property added which causes Point' class to be created
• functions that get passed Point' but were optimized for Point get deoptimized
• later functions get optimized again, this time supporting Point and Point' as argument

Considerations

!

initialize all members in constructor function in
the same order

avoid polymorphic functions

don’t do work inside unoptimizable functions

Resources

https://thlorenz.github.io/v8-perf/

https://thlorenz.github.io/v8-perf/

Thanks

Thorsten Lorenz
twitter @thlorenz | github @thlorenz | irc thlorenz

https://twitter.com/thlorenz
https://github.com/thlorenz

